EXERCISE 9.1

1. Identify the terms, their coefficients for each of the following expressions. (i) 5xyz2 – 3zy (ii) 1 + x + x2(iii) 4x2y2 – 4x2y2z2 + z2 (iv) 3 – pq + qr – p (v) (x/2) + (y/2) – xy (vi) 0.3a – 0.6ab + 0.5b

Explanation:

i) 5xyz2 – 3zy

The terms are 5xyz2 and -3zy and their coefficients are 5 and -3

ii) 1 + x + x2

The terms are 1, x and x2 and their coefficients are 1, 1 and 1

iii) 4x2y2 – 4x2y2z2 + z2 

 The terms are 4x2y2 , – 4x2y2z2 and z2 and their coefficients are 4, -4 and 1.

iv) 3 – pq + qr – p 

The terms are 3, – pq,  qr and p  and their coefficients are 3, -1, 1 and -1

v) (x/2) + (y/2) – xy

The terms are x2y2  and – xy and their coefficients are ½, ½ and -1.

vi) 0.3a – 0.6ab + 0.5b

The terms are 0.3a, – 0.6ab and 0.5b and their coefficients are 0.3, -0.6 and 0.5


2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories? x + y, 1000, x + x2 + x3 + x4 , 7 + y + 5x, 2y – 3y2 , 2y – 3y2 + 4y3 , 5x – 4y + 3xy, 4z – 15z2 , ab + bc + cd + da, pqr, p2q + pq2 , 2p + 2q

Explanation:

The types of polynomials given in the questions are explained as,

Monomial is an expression with only one term which is non zero.

Binomials is an expression with two terms 

Trinomials is an expression with three terms 

x + y- contains 2 terms and thus is binomial

1000- contains 1 term and thus is monomial

x + x2 + x3 + x4 – contains 4 terms and does not fit in any of the 3 categories

7 + y + 5x- contains 3 terms and is trinomial

 2y – 3y2- contains 2 terms and is binomial

2y – 3y2 + 4y3- contains 3 terms and is trinomial

5x – 4y + 3xy- contains 3 terms and is trinomial

4z – 15z2- contains 2 terms and is binomial

ab + bc + cd + da- contains 4 terms and does not fit in any of the 3 categories

pqr- contains 1 term and thus is monomial

p2q + pq2- contains 2 terms and is binomial

2p + 2q- contains 2 terms and is binomial

7 + y + 5x-- contains 3 terms and is trinomial


3.  Add the following.

(i) ab – bc, bc – ca, ca – ab

(ii) a – b + ab, b – c + bc, c – a + ac

(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2

(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl

Explanation:

i) (ab – bc) + (bc – ca) + (ca-ab)

First we open the brackets,

= ab – bc + bc – ca + ca – ab

= ab – ab – bc + bc – ca + ca

= 0


ii) (a – b + ab) + (b – c + bc) + (c – a + ac)

On opening the brackets we get,

= a – b + ab + b – c + bc + c – a + ac

= a – a +b – b +c – c + ab + bc + ca

= 0 + 0 + 0 + ab + bc + ca

= ab + bc + ca


iii)  (2p2q2 – 3pq + 4) + (5 + 7pq – 3p2q2)

On opening the brackets we get,

= 2p2q2 – 3pq + 4+ 5+ 7pq – 3p2q2  

= 2p2q2– 3p2q2 – 3pq+ 7pq+ 4+ 5

= – p2q2 + 4pq + 9


iv)(l2 + m2) + (m2 + n2) + (n2 + l2) + (2lm + 2mn + 2nl)

= l2 + l2 + m2 + m2 + n2 + n2 + 2lm + 2mn + 2nl

= 2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl


4.(a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3

(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz

 (c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q

Explanation:

(a) (12a – 9ab + 5b – 3) – (4a – 7ab + 3b + 12)

On opening the brackets we get,

= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12

= 12a – 4a - 9ab + 7ab +5b – 3b -3 -12

= 8a – 2ab + 2b – 15


b) (5xy – 2yz – 2zx + 10xyz) – (3xy + 5yz – 7zx)

On opening the brackets we get,

= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx

=5xy – 3xy – 2yz – 5yz – 2zx + 7zx + 10xyz

= 2xy – 7yz + 5zx + 10xyz


c) (18 – 3p – 11q + 5pq – 2pq2 + 5p2q) – (4p2q – 3pq + 5pq2 – 8p + 7q – 10)

On opening the brackets we get,

= 18 – 3p – 11q + 5pq – 2pq2 + 5p2q – 4p2q + 3pq – 5pq2 + 8p – 7q + 10

=18+10 -3p+8p -11q – 7q + 5 pq+ 3pq- 2pq^2 – 5pq^2 + 5 p^2 q – 4p^2 q

= 28 + 5p – 18q + 8pq – 7pq2 + p2q


EXERCISE- 9.2

5.Find the product of the following pairs of monomials.

(i) 4, 7p

(ii) – 4p, 7p

(iii) – 4p, 7pq

(iv)  4p3, – 3p

(v) 4p, 0

Explanation:

i) 4 x 7p

= 28p


ii) -4p x 7p

= -28p2


iii)  -4p x 7pq

= -28p2q


iv) 4p3 x -3p

= -12p4


v) 4p x 0

= 0                                           (Any multiple when multiplied by 0 its product is also 0)


6.  Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.

(p, q) ; (10m, 5n) ; (20x2 , 5y2) ; (4x, 3x2) ; (3mn, 4np)

Explanation:

We know, Area of a rectangle = Length of rectangle x breadth of rectangle. 

So, it is multiplication of two monomials.

(i) p × q = pq

(ii)10m ×  5n 

= 10 ×  5 mn

= 50mn

(iii) 20x2 ×  5y2 

= 20× 5 x2y2

=  100x2y2

(iv) 4x × 3x2 

= 12x3

(v) 3mn ×  4np 

= 12mn2p


7.  Complete the following table of products:

ncert solution for class 8 maths chapter 09 fig 1

Explanation:

ncert solutions for class 8 maths chapter 09 fig 2


8.  Obtain the volume of rectangular boxes with the following length, breadth and height, respectively.

(i) 5a, 3a2, 7a4

(ii) 2p, 4q, 8r

(iii) xy, 2x2y, 2xy2

(iv) a, 2b, 3c

Explanation:

Volume of  a rectangle is calculated by multiplying its length, breadth and height. So, V= length x  breadth x  height.

(i) 5a x 3a2 x 7a4 

= (5 × 3 × 7) × (a × a2 × a4 ) 

= 105 a1+2+4

= 105a7

(ii) 2p x 4q x 8r 

= (2 × 4 × 8 ) × (p × q × r ) 

= 64pqr

(iii) y × 2x2y × 2xy2 

=(1 × 2 × 2 ) × ( x × x2 × x × y × y × y2 ) 

=  4x4y4

(iv) a x  2b x 3c 

= (1 × 2 × 3 ) × (a × b × c) 

= 6abc


9.  Obtain the product of

(i) xy,  yz, zx

(ii) a, – a2 , a3

(iii) 2, 4y, 8y2 , 16y3

(iv) a, 2b, 3c, 6abc

(v) m, – mn, mnp

Explanation:

(i) xy × yz × zx 

xyz2

(ii) a × – a2  × a

= – a1+2+3

= -a6

(iii) 2 × 4y × 8y2 × 16y3

 = 2 × 4 ×  8 ×  16 y1+2+3

= 1024y6

(iv) a × 2b × 3c × 6abc 

= (2× 3× 6) abc2

= 36a2b2c2

(v) m × – mn × mnp 

= –mnp

 

Exercise 9.3

10.Carry out the multiplication of the expressions in each of the following pairs.

(i) 4p, q + r

(ii) ab, a – b

(iii) a + b, 7a²b²

(iv) a– 9, 4a

(v) pq + qr + rp, 0

Explanation:

(i)4p×(q + r) 

= 4pq + 4pr

(ii)ab× (a – b) 

= ab – a b2

(iii)(a + b) (7a2b2

= a(7a2b2) + b( 7a2b2)

= 7a3b2 + 7a2b3

(iv) (a2 – 9)(4a) 

= 4a3 – 36a

(v) (pq + qr + rp) × 0 

= 0 

(Any multiple when multiplied by 0 its product is also 0)


11. Complete the table.

ncert solutions for class 8 maths chapter 09 fig 3

Explanation:

i) Given, first expression= a

               second expression= b+c+d

  Therefore, product= a(b+c+d)

                                = ab+ac+ad


ii) Given, first expression= x+y-5

                second expression= 5xy

 Therefore, product= 5xy(x+y-5)

                               = 5x2y+5xy2-25xy


iii) Given, first expression= p

                second expression= 6p2-7p+5

      Therefore, product= p (6p2-7p+5)

                                    = 6p3-7p2+5p


iv) Given, first expression= 4p2q2

                 second expression= p2-q2

Therefore, Product= 4p2 q2 x (p2 – q2 )

                              = 4 p4 q2– 4p2 q4


v) Given, first expression=a + b + c

                 second expression= abc

  Therefore, product= abc( a + b+ c)

                                =a2bc + ab2c + abc2


12. Find the product.

i) a2 x (2a22) x (4a26)

ii) (2/3 xy) ×(-9/10 x2y2)

(iii) (-10/3 pq3/) × (6/5 p3q)

(iv) (x) × (x2) × (x3) × (x4)

Explanation:

i) a2 x (2a22) x (4a26)

= (2 × 4) × ( a2 × a22 × a26 )

= 8 × a2 + 22 + 26 

= 8a50

ii) (2xy/3) ×(-9x2y2/10)

=(2/3 × -9/10 ) ( x × x2 × y × y2 )

=(2/3 × -9/10 ) (  x2+1 ×  y2+1 )

= (-3/5 x3y3)

iii) (-10pq3/3) ×(6p3q/5)

= ( -10/3 × 6/5 ) (p × p3× q3 × q)

= (-4p4q4)

iv)  ( x) x (x2) x (x3) x (x4)

= x 1 + 2 + 3 + 4 

=  x10


13.  (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2

(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.

Explanation:

a) 3x (4x – 5) + 3

= 12x2 – 15x + 3

(i) Putting x=3 in 12x2 – 15x + 3

    12(3)2 – 15(3) + 3

    108 – 45 + 3

    66 


(ii) Putting x=1/2 in 12x2 – 15x + 3

= 12 (1/2)2 – 15 (1/2) + 3

= 12 (1/4) – 15/2 +3

= 3 – 15/2 + 3

= 6- 15/2

= (12- 15 ) /2

= -3/2


b) a(a+a +1)+5

= a3+ a2+ a+ 5

(i) putting a=0 in a3+ a2+ a+ 5

=03+02+0+5

=5

(ii) putting a=1 in a3+ a2+ a+ 5

1+ 1+ 1+5 

= 1 + 1 + 1+5

 = 8

(iii) Putting a = -1 in a3+ a2+ a+ 5

(-1)3+(-1)+ (-1)+5 

= -1 + 1 – 1+5

 = 4


14. (a) Add: p ( p – q), q ( q – r) and r ( r – p) 

(b) Add: 2x (z – x – y) and 2y (z – y – x) 

(c) Subtract: 3l (l – 4 m + 5 n) from 4l ( 10 n – 3 m + 2 l ) 

(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c)  from 4c ( – a + b + c )

Explanation:

a) p ( p – q) + q ( q – r) + r ( r – p)

= (p2 – pq) + (q2 – qr) + (r2 – pr)

= p2 – pq + q2- qr + r2 + pr

= p2 + q2 + r2 – pq – qr – pr


b) 2x (z – x – y) + 2y (z – y – x)

= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)

= 2xz – 2x2- 2xy + 2yz – 2y2- 2xy

= 2xz – 4xy + 2yz – 2x2 – 2y2


c) 4l ( 10 n – 3 m + 2 l ) – 3l (l – 4 m + 5 n)

= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)

= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln

= 25 ln + 5l2


d) 4c ( – a + b + c ) – (3a (a + b + c ) – 2 b (a – b + c))

= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – ( 2ab – 2b2 + 2bc ))

=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)

= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac +2ab – 2b2 + 2bc

= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2


EXERCISE- 9.4

15. Multiply the binomials.

(i) (2x + 5) and (4x – 3)

(ii) (y – 8) and (3y – 4)

(iii) (2.5l – 0.5m) and (2.5l + 0.5m)

(iv) (a + 3b) and (x + 5)

(v) (2pq + 3q2) and (3pq – 2q2)

(vi) (3/4 a2 + 3b2) and 4( a2 – 2/3 b2)

Explanation:

(i) (2x + 5)(4x – 3)

= 2x ( 4x – 3) +5 ( 4x – 3)

= 8x² – 6x + 20x -15

= 8x² + 14x -15

ii) (y – 8) (3y – 4)

 =  y(3y – 4) -8 (3y – 4)

 = 3y2 – 4y – 24y + 32

= 3y2 – 28y +32

iii) (2.5l – 0.5m) (2.5l + 0.5m)

= 2.5l (2.5 l + 0.5m) – 0.5m (2.5l + 0.5m)

= 6.25l2 + 1.25 lm – 1.25 lm – 0.25 m2

= 6.25l2– 0.25 m2

iv) (a + 3b) (x + 5)

= a (x + 5) +3b (x + 5)

= ax + 5a + 3bx + 15b

v) (2pq + 3q2) (3pq – 2q2)

= 2pq ( 3pq – 2q2) + 3q2 ( 3pq -  2q2)

= 6p2q2 – 4pq3 + 9pq3 – 6q4

= 6p2q2 + 5pq3 – 6q4

(vi) (3/4 a² + 3b² ) and 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x (4a² – 8/3 b² )

=3/4 a² x (4a² – 8/3 b² ) + 3b² x (4a² – 8/3 b² )

=3/4 a² x 4a² -3/4 a² x 8/3 b² + 3b² x 4a² – 3b² x 8/3 b²

=3a4 – 2a² b² + 12 a²  b² – 8b4

= 3a4 + 10a²  b² – 8b4


16. Find the product.

(i) (5 – 2x) (3 + x)

(ii) (x + 7y) (7x – y)

(iii) (a2+ b) (a + b2)

(iv) (p– q2) (2p + q)

Explanation:

(i) (5 – 2x) (3 + x)

= 5 (3 + x) – 2x (3 + x)

=15 + 5x – 6x – 2x2

= 15 – x -2 x 2


(ii) (x + 7y) (7x – y)

= x(7x-y) + 7y ( 7x-y)

=7x2 – xy + 49xy – 7y2

= 7x2 – 7y2 + 48xy


iii) (a2+ b) (a + b2)

= a2  (a + b2) + b(a + b2)

= a3 + a2b2 + ab + b3

= a3 + b3 + a2b2 + ab


iv) (p2– q2) (2p + q)

= p(2p + q) – q2 (2p + q)

=2p3 + p2q – 2pq2 – q3

= 2p3 – q3 + p2q – 2pq2


17. Simplify.

(i) (x2– 5) (x + 5) + 25

(ii) (a2+ 5) (b3+ 3) + 5

(iii)(t + s2)(t2 – s)

(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

(v) (x + y)(2x + y) + (x + 2y)(x – y)

(vi) (x + y)(x2– xy + y2)

(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

(viii) (a + b + c)(a + b – c)

Explanation:

i) (x2– 5) (x + 5) + 25

= x3 + 5x2 – 5x – 25 + 25

= x3 + 5x2 – 5x


ii) (a2+ 5) (b3+ 3) + 5

= a2b3 + 3a2 + 5b3 + 15 + 5

= a2b3 + 5b3 + 3a2 + 20


iii) (t + s2)(t2 – s)

t (t2 – s) + s2(t2 – s)

= t– st + s2t– s3

= t3 – s3 – st + s2t2


iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

= (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

=(ac – ad + bc – bd) + (ac + ad – bc – bd) + (2ac + 2bd)

= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd

= 4ac


v) (x + y)(2x + y) + (x + 2y)(x – y)

= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2

= 3x2 + 4xy – y2


vi) (x + y)(x2– xy + y2)

= x3 – x2y + xy2 + x2y – xy2 + y3

= x3 + y3


vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y = 2.25x2 – 16y2


viii) (a + b + c)(a + b – c)

= a2 + ab – ac + ab + b2 – bc + ac + bc – c2

= a2 + b2 – c2 + 2ab


EXERCISE 9.5

18. Use a suitable identity to get each of the following products.

(i) (x + 3) (x + 3)

(ii) (2y + 5) (2y + 5)

(iii) (2a – 7) (2a – 7)

(iv) (3a – 1/2)(3a – 1/2)

(v) (1.1m – 0.4) (1.1m + 0.4)

(vi) (a2+ b2) (- a2+ b2)

(vii) (6x – 7) (6x + 7)

(viii) (- a + c) (- a + c)

(ix) (1/2x + 3/4y) (1/2x + 3/4y)

(x) (7a – 9b) (7a – 9b)

Explanation:

i) ( x+3)(x+3)

= x(x+3)+3(x+3)

= x2+3x+3x+9

= x2+6x+9

Alternatively, we can use the (a+b)2=a2+2ab+b2 formula to easily derive the answer since, ( x+3)(x+3)= (x+3)2


ii) (2y + 5) (2y + 5)

= 2y (2y + 5)+5 (2y + 5)

= 4y2+10y+10y+25

= 4y2+20y+25

Alternatively, we can use the (a+b)2=a2+2ab+b2 formula to easily derive the answer since, (2y + 5) (2y + 5)= (2y + 5)2


iii) (2a – 7) (2a – 7)

= 2a (2a – 7) -7(2a – 7)

= 4a2- 14a – 14a+49

= 4a2- 28a+49

Alternatively, we can use the (a-b)2=a2-2ab+b2 formula to easily derive the answer since (2a – 7) (2a – 7)= (2a – 7)2


iv) (3a – 1/2)(3a – 1/2)

=  3a (3a – 1/2) -1/2(3a – 1/2)

= 9a2- 3a/2-3a/2+1/4

= 9a2- 3a + ¼


v) (1.1m – 0.4) (1.1m + 0.4)

= (1.1m)2 – (0.4)2              [Because, (a – b)(a + b) = a2 – b2]

=  1.21m2 – 0.16


vi) (a2+ b2) (- a2+ b2)

We first bring it into (a+b)(a-b) form

= ( b2+a2) ( b2- a2)

= b2-a2                            [Because, (a – b)(a + b) = a2 – b2]


vii) (6x – 7) (6x + 7)

Using the identity, (a-b)(a+b) = a2 – b2

= (6x)2 – 72

= 36x2 – 49


viii) (- a + c) (- a + c)

We can write this expression as 

( c – a ) (c – a )

= ( c – a ) 2

Using the identity, (a-b) 2 = a2 + b2 – 2ab

= c2 + a2 – 2ac


ix) (1/2x + 3/4y) (1/2x + 3/4y)

= (1/2x + 3/4y)2

Using the identity, (a+b) 2 = a2 + b2 + 2ab


= (x/2)2 + (3y/4)2 + 2 (1/2x)(3/4y)

= (x2/4) + (9y2/16) + (3xy/4)


x) (7a – 9b) (7a – 9b)

= (7a – 9b)2

Using the identity, (a-b) 2 = a2 + b2 – 2ab

= (7a)2 + (9b)2- 2 (7a)(9b)

= 49a2 – 126ab + 81b2


19. Use the identity (x + a) (x + b) = x+ (a + b) x + ab to find the following products.

(i) (x + 3) (x + 7)

(ii) (4x + 5) (4x + 1)

(iii) (4x – 5) (4x – 1)

(iv) (4x + 5) (4x – 1)

(v) (2x + 5y) (2x + 3y)

(vi) (2a+ 9) (2a+ 5)

(vii) (xyz – 4) (xyz – 2)

Explanation:

(i)(x + 3) (x + 7)

Here, a=3 and b=7. So, the expression can be framed as

= x2 + (3+7)x+7x3

= x2+10x+21


ii) (4x + 5) (4x + 1)

Here, a=5 and b=1 and x=4x. So, the expression can be framed as

= (4x)2 + (5+1)4x + 5

= 16x2 + 20x+4x + 5

= 16x2 + 24x + 5


iii) (4x – 5) (4x – 1)

Here, a= -5 and b= -1. So, the expression can be framed as

= (4x)2 + (-5 + (-1))4x + 5

= 16x2 – 24x + 5


iv) (4x + 5) (4x – 1)

Here, a=5 and b=-1 and x=4x. So, the expression can be framed as

= (4x)2 + (5-1)4x – 5

= 16x2 +(4)4x – 5

= 16x2 +16x – 5


v) (2x + 5y) (2x + 3y)

Here, a=5y and b=3y and x=2x. So, the expression can be framed as

= (2x)2 + (5y + 3y)2x + 5y x 3y

= 4x2 + 16xy + 15y2


vi) (2a2+ 9) (2a2+ 5)

Here, a=9 and b=5 and x= 2a2. So, the expression can be framed as

= (2a2)2 + (9+5)2a2 + 9 x 5

= 4a4 + 28a2 + 45


vii) (xyz – 4) (xyz – 2)

Here, a=-4 and b=-2 and x= xyz. So, the expression can be framed as

= x2y2z2 + (-4 -2)xyz + 8

= x2y2z2 – 6xyz + 8


20.  Find the following squares by using the identities.

(i) (b – 7)2

(ii) (xy + 3z)2

(iii) (6x2 – 5y)2

(iv) [(2m/3) + (3n/2)]2

(v) (0.4p – 0.5q)2

(vi) (2xy + 5y)2

Explanation:

Using identities:

(a – b) 2 = a2 + b2 – 2ab  (a + b) 2 = a2 + b2 + 2ab

(i) (b – 7)

Using identity (a – b) 2 = a2 + b2 – 2ab,

= (b)2 – 2(7)(b) + (7)2

= b2- 24b + 49


(ii) (xy + 3z)

Using identity (a + b) 2 = a2 + b2 + 2ab

= (xy)2 + 2(xy)(3z) + (3z)2

= x2y2 + 6xyz + 9z2


(iii) (6x2 – 5y)2

Using identity (a – b) 2 = a2 + b2 – 2ab 

= (6x)2 + (5y)2 – 2 (6x)(5y)

 = 36x4 – 60x2y + 25y2


(iv) [(2m/3) + (3n/2)]

Using identity (a + b) 2 = a2 + b2 + 2ab

= (4m2/9) +(9n2/4) + 2mn


(v) (0.4p – 0.5q)2 

Using identity (a – b) 2 = a2 + b2 – 2ab,

= 0.16p2 – 0.4pq + 0.25q2


(vi) (2xy + 5y)2 

Using identity (a + b) 2 = a2 + b2 + 2ab 

=4x2y2 + 20xy2 + 25y2


21. Simplify.

(i) (a– b2)2

(ii) (2x + 5) – (2x – 5)2

(iii) (7m – 8n)+ (7m + 8n)2

(iv) (4m + 5n)+ (5m + 4n)2

(v) (2.5p – 1.5q)– (1.5p – 2.5q)2

(vi) (ab + bc)2– 2ab²c

(vii) (m– n2m)+ 2m3n2

Explanation:

i) (a2– b2)2 

Using identity (a – b) 2 = a2 + b2 – 2ab,

= (a2+b2-2ab)2

= a4 + b4 – 2a2b2


ii) (2x + 5) – (2x – 5)2
= [(2x)2 + 2(5) (2x) + (5)2 ] – [(2x)2 – 2(2x)(5) + (5)2

= 4x2 + 20x + 25 – 4x2 + 20x – 25 

= 20x+20x

= 40x


iii) (7m – 8n)+ (7m + 8n)2
= 49m2 – 112mn + 64n2 + 49m2 + 112mn + 64n2
= 98m2 + 128n2


iv) (4m + 5n)+ (5m + 4n)2
= [(4m)2 + 2(4m)(5n) + (5n)2] + [(5m)2 + 2(5m)(4n) + (4n)2]
= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2

= 41m2 + 80mn + 41n2


v) (2.5p – 1.5q)– (1.5p – 2.5q)2
= [(2.5p)2 – 2 (2.5p)(1.5q) + (1.5q)2] – [(1.5p)2-2(1.5p)(2.5q)+ (2.5q)2]

= 6.25p2 – 7.5pq + 2.25q2 – 2.25p2 + 7.5pq – 6.25q2
= 4p2 – 4q2


vi) (ab + bc)2– 2ab²c 

= [(ab)2 + 2(ab)(bc) + (bc)2] – 2ab²c 

= a2b2 + 2ab2c + b2c2 – 2ab2c

= a2b2 + b2c2


vii) (m– n2m)+ 2m3n2
= m4 – 2m3n2 + m2n4 + 2m3n2
= m4 + m2n4


22. Show that.

(i) (3x + 7)– 84x = (3x – 7)2

(ii) (9p – 5q)2+ 180pq = (9p + 5q)2

(iii) (4/3m – 3/4n)2 + 2mn = 16/9 m2 + 9/16 n2

(iv) (4pq + 3q)2– (4pq – 3q)= 48pq2

(v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0

Explanation:

i) LHS = (3x + 7)– 84x

Using identity (a + b) 2 = a2 + b2 + 2ab

= (3x)2 + 72 + 2(3x)(7) – 84x

= 9x2 + 49 + 42x – 84x
= 9x – 42x + 49
= RHS

LHS = RHS


ii)  LHS = (9p – 5q)2+ 180pq

Using identity (a - b) 2 = a2 + b2 - 2ab
= 81p2 – 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2

RHS = (9p + 5q)2

Using identity (a + b) 2 = a2 + b2 + 2ab
= 81p2 + 90pq + 25q2
LHS = RHS

ncert solution for class 8 maths chapter 09 fig 8

LHS = RHS


iv)  LHS = (4pq + 3q)2– (4pq – 3q)2

= 16p2q2 + 24pq2 + 9q2 – 16p2q2 + 24pq2 – 9q2

= 48pq2= RHS

LHS = RHS


v) LHS = (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a)

a2 – b2 + b2 – c2 + c2 – a2

= 0

= RHS


23. Using identities, evaluate.

(i) 71²

(ii) 99²

(iii) 1022

(iv) 998²

(v) 5.2²

(vi) 297 x 303

(vii) 78 x 82

(viii) 8.92

(ix) 10.5 x 9.5

Explanation:

i) 712

= (70+1)2

= 702 + 140 + 12

= 4900 + 140 +1

= 5041


ii) 99²

= (100 -1)2

= 1002 – 200 + 12

= 10000 – 200 + 1

= 9801


iii) 1022

= (100 + 2)2

= 1002 + 400 + 22

= 10000 + 400 + 4 = 10404


iv) 9982

= (1000 – 2)2

= 10002 – 4000 + 22

= 1000000 – 4000 + 4

= 996004


v) 5.22

= (5 + 0.2)2

= 52 + 2 + 0.22

= 25 + 2 + 0.04 = 27.04


vi) 297 x 303

= (300 – 3 )(300 + 3)

= 3002 – 32

= 90000 – 9

= 89991


vii) 78 x 82

= (80 – 2)(80 + 2)

= 802 – 22

= 6400 – 4

= 6396


viii) 8.92

= (9 – 0.1)2

= 92 – 1.8 + 0.12

= 81 – 1.8 + 0.01

= 79.21


ix) 10.5 x 9.5

= (10 + 0.5)(10 – 0.5)

= 102 – 0.52

= 100 – 0.25

= 99.75


24. Using a– b2 = (a + b) (a – b), find

(i) 512– 492

(ii) (1.02)2– (0.98)2

(iii) 1532– 1472

(iv) 12.12– 7.92

Explanation:

i) 512– 492

= (51 + 49)(51 – 49) 

= 100 x 2 

= 200


ii) (1.02)2– (0.98)2

= (1.02 + 0.98)(1.02 – 0.98)

 = 2 x 0.04 

= 0.08


iii) 153– 1472

= (153 + 147)(153 – 147) 

= 300 x 6 

= 1800


iv) 12.1– 7.92

= (12.1 + 7.9)(12.1 – 7.9)

 = 20 x 4.2

= 84


25.  Using (x + a) (x + b) = x+ (a + b) x + ab, find

(i) 103 x 104

(ii) 5.1 x 5.2

(iii) 103 x 98

(iv) 9.7 x 9.8

Explanation:

i) 103 x 104

= (100 + 3)(100 + 4)

= 1002 + (3 + 4)100 + 12

= 10000 + 700 + 12

= 10712

ii) 5.1 x 5.2

= (5 + 0.1)(5 + 0.2)

= 52 + (0.1 + 0.2)5 + 0.1 x 0.2

= 25 + 1.5 + 0.02

= 26.52

iii) 103 x 98

= (100 + 3)(100 – 2)

= 1002 + (3-2)100 – 6

= 10000 + 100 – 6

= 10094

iv) 9.7 x 9.8

= (9 + 0.7 )(9 + 0.8)

= 92 + (0.7 + 0.8)9 + 0.56

= 81 + 13.5 + 0.56

= 95.06


Sample